Closed-loop Control System for the Reliability of Intelligent Mechatronic Systems

نویسندگان

  • Tobias Meyer
  • Walter Sextro
چکیده

So-called reliability adaptive systems are able to adapt their system behavior based on the current reliability of the system. This allows them to react to changed operating conditions or faults within the system that change the degradation behavior. To implement such reliability adaptation, self-optimization can be used. A self-optimizing system pursues objectives, of which the priorities can be changed at runtime, in turn changing the system behavior. When including system reliability as an objective of the system, it becomes possible to change the system based on the current reliability as well. This capability can be used to control the reliability of the system throughout its operation period in order to achieve a pre-defined or user-selectable system lifetime. This way, optimal planning of maintenance intervals is possible while also using the system capabilities to their full extent. Our proposed control system makes it possible to react to changed degradation behavior by selecting objectives of the self-optimizing system and in turn changing the operating parameters in a closed loop. A two-stage controller is designed which is used to select the currently required priorities of the objectives in order to fulfill the desired usable lifetime. Investigations using a model of an automotive clutch system serve to demonstrate the feasibility of our controller. It is shown that the desired lifetime can be achieved reliably.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Control of Flexible Link Robot using a Closed Loop Input-Shaping Approach

This paper is has addressed the Single Flexible Link Robot. The dynamical model is derived using Euler-Lagrange equation and then a proper controller is designed to suppress a  vibration based-on Input-Shaping (IS) method. But, IS control method is an open loop strategy. Due to the weakness of open loop control systems, a closed loop IS control system is proposed. The achieved closed loop c...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014